IOWA STATE UNIVERSITY **Civil, Construction & Environment Engineering**

Sijia Lu, Simon Laflamme, James Ricles, Spencer Quiel **Performance-Based Design Procedures for Novel Semi-Active Cladding Connection Applied to Blast Mitigation**

Objective • Design a damping system to against and dissipate a blast load. • Create a design procedure to determine dynamic parameters of a cladding connected a damping system. **Problem Statement** • Multi-functional cladding is considered to replace conventional cladding • Semi-active device will provide variable force on resistance A maximum energy dissipation can be generated in a passive mode Approach • Design the performance-based design (PBD) mode. • Derive governing design equations of cladding and control system. Validation of PBD procedure. **Structure-cladding Model SDOF** Structure \blacktriangleright Mass of cladding, m_c Rubber \succ Stiffness of cladding, k_c \succ Damping coefficient, c_c \succ Friction, F_c \succ Rubber thickness, t_h **Blast** Interspace between cladding JUV $m_{cladding}$ and structure, d_0 Friction 1 Interspace between cladding and rubber bumper, d The maximum deflection u_{max} Rubber cladding will be, u_{max} **2DOF** Structure Figure 1: Structure-Cladding System of SDOF Rubber κ_s WW V V V V V I Blast Load $m_{structure}$ m_{cladding} C_{S} Friction Rubber

Figure 2: Structure-Cladding System of 2DOF

The equation of motion for SDOF model: rubber bumper, F_{blast} is the external lateral blast.

(b) Comparing maximum displacement by SDOF and 2DOF

