Cost Per Mile Construction Estimation Methodology for Railroads

Jeffrey T. von Brown

Objective: To develop a railway cost per mile (CPM) estimate methodology to be used for planning analysis, that is based on intended service and/or location characteristics, from which infrastructure investment estimates and cost analysis decisions can be made.

Factors \& Components

The CPM depends on factors;

-Geography	-Structures online
-Land use	- Crossings \& interchanges
\bullet - Intended speed	- Labor
- Motive power	- Intended level of use
- Materials	- Signaling system
-Route Geometry	
Factors are categorized as;	
Location Influences	
Land Use:	
\square Urban	
\square Rural	-
Terrain:	\%
\square Plains	
\square Rolling Hills	
\square Mountains	,

Service Influences

Speed: 79, 110, 125, 150, 220 mph

\$700	Relative Track Maintenance cost ($60 \mathrm{mph}=\mathbf{\$ 1 0 0}$)
\$600	
\$500	
苞 $\$ 400$	
- $\$ 300$	
\$200	
\$100	
	$\begin{array}{llllllllllll}20 & 30 & 40 & 50 & 60 & \begin{array}{cc}70 & 80 \\ \text { Speed (mph) }\end{array} & 100110120130140\end{array}$

Service: Passenger, Freight, Mixed
Motive Power: Non-electric, Electric Construction: Build, Upgrade, Additional

Methodology Structure

Cost per Mile examples

Costs show that costs changes as design requirements change due to restrictions or needs of terrain, land use, and speed

Results (Selected)

Design Speed	Description	Proposed CPM estimates (Millions)	Existing CPM Estimates (Millions)
$110-\mathrm{mph}$ Non-Electric	Upgraded Single Suburban Hills	$\$ 3.6$	$\$ 5.2-5.8$
	Upgraded Single Suburban Plains	$\$ 2.5-\$ 3.2$	$\$ 1.5-\$ 2.4$
	Upgraded Single Rural Hills	$\$ 3.4$	$\$ 1.9-\$ 2.4$
$125-m p h$ Non-Electric	Upgraded Single Suburban Plains	$\$ 3.6-\$ 4.7$	$\$ 1.2-\$ 11.7$
	Upgraded Single Urban Plains	$\$ 4.3-\$ 5.4$	$\$ 5.6$
$125-\mathrm{mph}$ Electric	Upgraded Single Suburban Plains	$\$ 4.2-\$ 5.3$	$\$ 3.4-\$ 14.2$
	Upgraded Single Urban Plains	$\$ 5.0-\$ 6.1$	$\$ 8.0$
	Upgraded Double Urban Plains	$\$ 7.8-\$ 9.5$	$\$ 7.4$
$150-\mathrm{mph}$ Electric	Built Single Suburban Plains	$\$ 10.4-\$ 14.8$	$\$ 6.4-\$ 16.2$
	Built Double Suburban Plains	$\$ 16.0-\$ 22.6$	$\$ 8.2-\$ 16.7$
	Built Double Rural Plains	$\$ 13.9-\$ 19.9$	$\$ 5.9$
$220-m p h$ Electric	Built Double Suburban Plains	$\$ 35.8$	$\$ 19.1-\$ 37.6$
	Built Single Suburban Plains	$\$ 24.1$	$\$ 19.3-\$ 23.8$
	Built Single Urban Plains	$\$ 28.1$	$\$ 14.0-\$ 32.0$

Findings

- Results may prove useful for planning NETSCORE21 analysis and activities
- State level categorization may not be
- Right of way cost sources hard to determine
- Prior studies based on out of date assumptions or inputs
- Many studies have not begun or been finished, thus costs are unverifiable
- Fine line balancing ease of use and size of data input requirements.
ctre
Center for Transporiaiio
Research and Education IOWA STATE UNIVERSITY

